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Abstract 

Based upon previous results for the Bloch-wave so- 
lution in the Bragg case and the consistency between 
the Bloch-wave solution and multislicing in the Bragg 
case, a complete numerical solution has been 
developed for reflection electron diffraction called 
the Bloch wave and multislice combined for reflection 
(BMCR) method. Results are presented of applying 
the BMCR method to several problems in high-energy 
electron reflection. First, simulations of the effects of 
surface reconstruction and adsorption on RHEED 
patterns are reported. Next, the results of simulations 
of surface steps are shown and their effects on the 
wave field analyzed numerically. Last, the existence 
of the surface wave which is related to electron surface 
resonance phenomena is demonstrated. 

I. Introduction 

RHEED (reflection high-energy electron diffraction) 
is a well established technique in surface science. It 
is especially useful for the identification of surface 
crystallization, reconstruction and relaxation etc. 
(Menadue, 1972; Daimon & Ino, 1985). However, the 
theoretical development of RHEED has been rather 
slow, and in general the intensity in the diffraction 
pattern cannot be subjected to analysis and only the 
positions of the spots are used for structural iden- 
tification. It is clear that RHEED patterns contain 
far more information than just the position of the 
spots, but analyzing this information relies heavily 
on the development of a dynamical electron reflection 
theory. 

Miyake & Hayakawa (1966) clearly indicated that 
there was strong evidence that electron reflection in 
both low-energy and high-energy cases is dynamical. 
Even for the low-energy case, interference between 
different beams was widely observed in LEED (low- 
energy electron diffraction) patterns and intensity 
profiles and the concept of a thin penetration depth 
are only meaningful in some restricted cases. 

Direct and localized observation of surfaces has 
been attempted for a long time with increasing interest 
in surface science, while various techniques, such as 
LEED, RHEED, Auger-electron spectroscopy AES 
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and photoemission spectroscopy (XPS, UPS), 
unfortunately can only provide average statistical 
information. The spatial resolution of various micro- 
probe analysis techniques such as AES, XPS and UPS 
is limited by the probe size and energy dissipation. 
Therefore, making use of reflected electrons to image 
surfaces is a logical and natural step. 

Many authors have made significant contributions 
to the development of dynamical theory in electron 
reflection. The Bloch-wave theory was first developed 
in this field by Bethe (1928), Kato (1952), Miyake, 
Kohra & Takagi (1954), Whelan & Hirsch (1957), 
Fujimoto (1959), Kohra, Moliere, Nakano & Ariyama 
(1962), Colella (1972), Moon (1972) and Britze & 
Meyer-Ehmsen (1978). Later, a multislice method 
(slices parallel to the surface) was developed by Mak- 
sym & Beeby (1981, 1982) and lchimiya (1983) for 
electron reflection. More recently, Zhao, Poon& Tong 
(1988) and Zhao & Tong (1988) developed an 
invariant-embedding R-matrix scheme for calculat- 
ing a rocking curve in RHEED. All of these 
approaches focus on the diffraction aspect of the 
problem and an analysis in real space of these 
methods has not been reported. In 1986, Pent & 
Cowley subjected the problem to both real- and 
reciprocal-space analyses by utilizing a multislice 
method with slices perpendicular to the surface, 
which was initialized by the revival of the REM 
(reflection electron microscopy) technique in electron 
microscopes. The advantage of this method is its 
flexibility for simulating various surface structures. 
However, a problem is serious edge effects, which 
makes stationary solutions hard to achieve. 

We have analyzed the Bloch-wave solution in a 
semi-infinite crystal in the Bragg case (Marks & Ma, 
1988, 1989a; Ma & Marks, 1989) and the consistency 
between the solution and its propagation via multi- 
slice iterations (Ma & Marks, 1990). The results have 
clearly shown that consistency has been reached with 
sufficient numerical accuracy, and a stationary solu- 
tion for a free surface achieved with the edge effects 
reduced to the level which permits simulat;_ons of 
surface phenomena in a manageable and reliable 
manner. This means that a new method which we call 
Bloch wave and multislice combined for reflection 
(the BMCR method) has emerged. It combines the 
advantages of the Bloch-wave method and the multi- 
slice approach (stationary solution obtainable for the 
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former and flexibility of imperfect-surface simulation 
for the latter) and reduces the effects of the disadvan- 
tages of both (inflexibility of imperfect-surface simu- 
lation for the former and edge effects for the latter). 
In this paper, we report results of simulating several 
surface phenomena,  i.e. stationary solutions in the 
crystal potential with different non-free surfaces using 
the BMCR method. 

We report the simulation of the effects of surface 
reconstructions and adsorption on RHEED patterns, 
which has been discussed in part in a previous paper 
(Marks & Ma, 1990). Surface reconstructions and 
adsorption are well known and experimentally well 
studied surface phenomena in RHEED. Next, we 
present simulations of surface steps and analyze their 
effects on the wave field numerically. Finally, we 
demonstrate the existence of a surface wave which is 
related to surface resonance phenomena. 

II. Surface reconstruction and adsorption in RHEED 

In this section we present the results of dynamical 
simulations of a surface reconstruction and adsorp- 
tion in RHEED by using the newly developed BMCR 
method. Fig. 1 shows the unit cell for the Bloch-wave 
calculation in (a) and the multislice iterations in (b). 
The system used is f.c.c, gold and the absorption is 
included by taking the imaginary potential as 10% of 
the real potential in both the Bloch-wave and multi- 
slice calculations. The size of the two unit cells is 
8a x 2 a  (a denotes the magnitude of the primitive 
unit-cell vector of gold). For the 2 x 1 reconstruction 
or adsorption, the y dimension of the unit cell needs 
to be two times larger than the primitive vector. As 
far as the requirement of the sampling theorem is 
satisfied and the maximum array size allowed in the 
programming is used, the maximum x dimension of 
the unit cell is 8a. This may result in more serious 
edge effects during the multislice iterations. Here, 
'edge effects' refer to the edge of the tilted incident 
wave field moving towards the surface during the 
multislice iteration. This is because a sampling array 
with finite size in the multislice iteration is implicitly 
periodically repeated and therefore fails at one edge 
to model correctly the infinite incidence wave. To 
reduce the edge effects, the surface is moved further 
towards the right-hand side in each unit cell as indi- 

(a) (b) 
Fig. 1. Unit-cell set up for the simulation of surface reconstruction 

and adsorption. (a) Unit cell for the Bloch-wave calculation. 
(b) Unit cell for multislice calculation. The unit-cell size is 
8a × 2a, a = 4.0497/~. 

cated in both Figs. l ( a )  and (b), which leaves more 
room for the reflected waves. This is feasible because, 
when absorption is included, the extreme low 
intensity deep in the crystal damps edge effects on 
the right-hand side. The sampling array is 512 × 128. 
The coordination in the calculation is set up as the 
following: the z axis [001] is from the left side to the 
right pointing inward to the crystal; the x axis [100] 
points up to down and the y axis [010] is inwardly 
normal to the page. The y axis is along the forward 
direction of the incident wave. All calculations in this 
paper were performed for 100 keV incident electrons. 

For the 2 x 1 gold-surface reconstruction, one Au 
atom is placed on the site indicated in (b) for each 
of four slices with no relaxation. For a 2 x 1 chemi- 
sorbed oxygen surface, the Au atom was replaced by 
an O atom. The position of the surface in each slice 
is indicated in Fig. 1, at (3/4, 0) if the left end of 
each slice is taken as (0, 0), i.e. three quarters of the 
horizontal axis towards the right side of each slice. 
The first 50-100 slices are for a fiat surface so that 
the incident or trial wave function converges to the 
true solution for the free surface. 

Fig. 2 shows outputs of the wave fields from multi- 
slice iterations for the 2 x 1 gold reconstruction in (i) 
and 2 x 1 oxygen adsorption in (ii). If the thickness 
of the first, (a),  is taken as the reference thickness of 
the calculation, 0/~, the thickness of the last slice (1) 
is 556.8/~. The thickness difference between any two 
adjacent slices is 50 ]k and the incidence angle is 
30 mrad. The first slice is the solution of the Bloch- 
wave calculation. The position of the surface of each 
slice is as indicated in Fig. 1: (3/4, 0). As expected, 
the figure shows that the wave disturbance for the 
2 x 1 gold reconstruction is much stronger than that 
for 2 x 1 oxygen adsorption. The incident wave starts 
to be scattered by the surface atoms at the third slice. 
In subsequent slices, the incident wave appears to be 
scattered at the lower atom position, even though 
there is no atom on that site. This looks like a 'mirror 
effect' and is clearer when the incident wave is 
excluded and only the Bragg reflected waves are 
present, as shown in Fig. 3. The slices in Fig. 3 
correspond to the outputs in Fig. 2. The size of each 
slice in Fig. 3 is 4a x 2a. Each slice in Fig. 3 extends 
from the surface into the vacuum (from right to left) 
a distance of 16.2 A as indicated in the figure. 

The edge effects in Fig. 2 appear quite serious [the 
edge of the incident wave field on the left side almost 
moves into the crystal surface at the last slice (1)] 
because the size of the unit cell is limited by the 
maximum sampling array. The Bragg reflected wave 
fields in slices i to l of Fig. 3 show the same effects. 
This will erode the accuracy of the numerical investi- 
gations in the Bragg reflected wave fields and the 
calculation would lose reliability when the incident 
edge moves into the crystal, because it is no longer 
a stationary solution. 
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Fig. 4(i) shows the Bragg reflected waves in 
reciprocal space, i .e .  the R H E E D  patterns excluding 
the incidence beam, in which each pattern corre- 
sponds to the slice in Fig. 3(i) labeled with the same 
letter. Fig. 4(ii) is a convergence analysis of  Fig. 4(i) 
(Ma & Marks, 1990). Fig. 5 corresponds to Fig. 3(ii). 
The convergence analyses for both Figs. 4(i) and 5(i) 
show stability after 300 ~ .  

To display the patterns more clearly, Fig. 6 shows 
the y-modulated patterns (the intensity of  each pat- 
tern is presented in the third dimension) of  (a) and 
(l) for both Figs. 4(i) and 5(i). There are several 
points to note in Fig. 6: 

(i) (01) and (07) forbidden Bragg spots emerge 
at 556.8 ~ because of  the existence of the 2 x 1 surface 
adatoms. 
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Fig. 2. Outputs  o f  the wave  fields from mult is l ice  i terat ions for 2 x 1 go ld  recons truct ion  (i) and 2 x  1 o x y g e n  adsorpt ion  (ii). The 
th icknesses  o f  the first and  last s l ices are 0 and 556.8 A respect ively .  The  th ickness  dif ference b e t w e e n  t w o  nearest  s l ices At = 50 A ,  
the size o f  the unit cell in the ca lcu la t ions  is 8a x 2a, with an absorpt ion  o f  10% and a beam inc idence  o f  30 mrad. 
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(ii) 2 x 1 reconstruction spots occur between the 
Bragg spots. It should be noted that a simulated 
RHEED pattern for surface reconstruction has never 
been obtained by the Bloch-wave method or multi- 
slice approach individually. The BMCR method 
demonstrates its advantages on this point. 

(iii) The intensities of the reconstruction spots for 
2 x l  gold are noticeably stronger than for 2 x l  
oxygen. 

(iv) The intensities of the Bragg spots (03) and (03) 
are noticeably stronger than the Bragg spots (01) and 
(01) and the reconstruction spots. 

(v) The intensity of the specular spot for 2 x 1 gold 
( t=556 .8 /~)  is reduced significantly, compared to 
that for a perfect flat surface (t =0 /~) ,  while the 
intensity of the specular spot for 2 x 1 oxygen adsorp- 
tion (t =556-8/1,) does not change noticeably. This 
can be explained by dynamical interaction between 

the different reflected beams caused by the scattering 
from the adatoms on the surface. The stronger poten- 
tial scatters more electrons of the specular beam into 
the Bragg reflected beam. This kind of information 
can be directly used to analyze experimental data in 
RHEED. 

III. Surface steps 

Investigation of surface step distributions in real 
space can provide useful information with respect to 
crystal growth, evaporation, surface phase transfor- 
mations and mechanical properties (Somorjai, 1981). 
Many different explanations have been proposed for 
the mechanism of step contrast. Cowley & Peng 
(1985) considered steps as phase objects with phase 
contrast arising due to defocusing, deviation from the 
Bragg condition and possible displacements of the 

(i) 

(ii) 

Fig. 3. Outputs of the Bragg reflected 
wave fields, excluding the incident 
wave, from the multislice iterations, for 
(i) 2 x 1 gold reconstruction and (ii) 2 x 
1 oxygen adsorption. The rest of the 
conditions are the same as in Fig. 2. The 
thickness series from (a) to (I) is: 0.0, 
50.6, 101.2 .. . .  , 556.8 ,~. 
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objective aperture, while Turner & Cowley (1981) 
suggested that a surface step can split the electron 
beam into Bragg-Bragg (BB) and Bragg-Laue (BL) 
beams and the interference between the two produces 
fringes along the step. 

A dynamical interpretation of the step contrast was 
first attempted by P e n g &  Cowley (1986) using a 
multislice approach. However, the calculations were 
performed without clear evidence that the solution 
was stationary. Here, we use the BMCR method to 
simulate surface steps. 

Fig. 7 shows the unit-cell constructions of a step 
up (a) and a step down (b). The system in the calcula- 
tion is f.c.c, gold, and absorption is included by taking 
the imaginary potential as 10% of the real potential 
in both the Bloch-wave calculation and the multislice 
calculations. The size of unit cell in the calculations 
is 16a x la,  while the results are displayed as 8a x 2a 
and the sampling array is 1024 × 64. The coordination 
system used is the same as that in § II. For an atomic 
step up, one layer of Au atoms is added to the surface. 

Conversely, for an atomic step down, the outermost 
layer of Au atoms is taken away from the surface. 
The first 100 slices were used to achieve a steady wave 
field in the crystal potential for a free surface without 
surface truncation. The remaining 400 slices are inser- 
ted with a step. Here, only one step is analyzed. 

Figs. 8 and 9 show the results of the calculations 
with surface steps. The total thickness in each case 
is 607.5 A, and the thickness difference between the 
two nearest slices is 50 A. Fig. 8 shows the results for 
25 mrad incidence and Fig. 9 for 30 mrad incidence 
for both step up (i) and step down (ii). One of the 
most important features of these results is that the 
wave fields converge to the original stationary state 
after about 250 A (from d to h), during which the 
wave fields are disturbed by the steps. In other words, 
the transition range of 200-250 A, both begins and 
ends with a stationary state. The results clearly indi- 
cate that the simulation of the wave disturbance 
resulting from the steps has not been affected by edge 
effects after 607.5/~ iterations, which is a necessary 

(a) (c) (e) (g) (i) (k) 

(b) (d) (f)  (h) (J) (1) 
(i) 
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Fig. 4. (i) RHEED patterns excluding the 
incident beam, one-to-one correspon- 
dence with the output slices in Fig. 2(i). 
(ii) The convergence curve of (i). 
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Fig. 5. (i) RHEED patterns excluding the 
incident beam, one-to-one correspon- 
dence with the output slices in Fig. 2(ii). 
(ii) The convergence curve of (i). 

?×1 flu '.;ur'l,ce eecon,~truct ~on 

Ih icl;nes~: 0 556.8 fl 
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2xl 0 Surface Absorption 

Thickness: 0 556.8 I% 

I ~ ~ -  

Fig. 6. y-modulated patterns of (a) and (l) of  Figs. 4(i) and 5(i). 

M u l l i s l i c e  M u l l i , l i t c  

S t e p  u p  S t e p  d , ~ n  

(a) (b) 

Fig. 7. Unit-cell set up for simulations of (a) step up and (b) step 
down. The upper two are the unit cells for the Bloch-wave 
calculation and the lower two are the unit cells for multislice 
iterations. The size of the unit cell in the calculations is 16a x 1 a 
(a = 4-0497/~), and the wave fields are displayed as 8a x 2a. 
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(ii) 
Fig. 8. Outputs of  the wave field from multislice iterations for the simulations of  (i) step up and (ii) step down. The thicknesses of  the 

first and last slices are 0 and 607-5 A respectively. The thickness difference between two nearest slices is 50 A, the size of  unit cell 
in the calculation is 16a x la, the size of  unit cell displayed is 8a x 2a with an absorption of  10%. The beam incidence is 25 mrad. 
The step is introduced at t = 101.2 A. 
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Fig. 9. Outputs of  wave field from multislice iteration under  the same conditions as for Fig. 8, except for beam incidence of 30 mrad. 
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condit ion for the val idi ty of  the analysis.  C o m p a r i n g  
(i) and (ii) in both Figs. 8 and  9, one can easily find 
that the wave dis turbance of  a step up is better 
confined than that of  step down and the t ransi t ion 
range of a step up (about  250,~)  is a little shorter 

Up Flat Down 

(a) (b) (c) 

Fig. 10. Outputs of the wave fields in vacuum which include the 
Bragg reflected waves and the incident wave from multislice 
iteration for the simulations of the surfaces with (a) step up, 
(b) fiat surface and (c) step down. The total thickness is 556.8 A. 
The thickness difference between two nearest slices is 50 A, the 
size of unit cells displayed is 4a x l a, extending from surface 
(right side) into vacuum (left side) with an absorption of 10% 
and the beam incidence is 30 mrad. 

than that o f  a step down (>250/~,).  This p h e n o m e n o n  
so far has no exper imenta l  confirmation.  

For compar ison ,  Fig. 10 shows the wave fields in 
vacuum for the surface with one step up (a) ,  the flat 
surface (b) and  the surface with one step down (c). 
The size of  each slice d isp layed is 4a x l a, which 
extends from surface (origin) into vacuum (from right 
to left) for a distance of  4a. The Bragg reflected wave 
field excluding the inc idence  wave is shown in Fig. 
11, which corresponds to Fig. 10, except that the size 
of  the d isp layed slices is 8a x la ,  i.e. twice as large 
as that in Fig. 10 along the z axis (see Fig. 1). The 
wave dis turbance due to the step appears  clearer in 
Fig. 11, and  the electron intensi ty dis t r ibut ion for a 
step down appears  to be reflected further from the 
surface than  that for a step up. 

To s imulate  R E M  in an electron microscope,  the 
specular  beam was used for imaging and the optical 
axis tilted to be coincident  with the specular  beam. 
One-d imens iona l  images for the last slice in Figs. 
10(a),  (b) and  (c) ( t = 5 5 6 . 8 / ~ )  are shown in 
Fig. 12(i). These are the plots of  wave intensities 
v e r s u s  the dis tance extending from the surface into 
vacuum ( 0 - 6 x 4 . 0 4 9 7 / ~ ,  from right to left). Each 
column is a focal series from -3000  to 3000/~ in Figs. 
10(a), (b) and  (c). The defocus step is 1000 A. A 
contrast reversal with defocus is quite clearly demon-  
strated. However,  it should  be pointed out that there 
is a considerable  amount  of  numerical  error involved 
in the calculat ion due to a l imited cell size and the 
one-d imens iona l  images s imulated here should 
be hand led  cautiously.  For example,  the width of  
each Bragg peak in the y -modula ted  patterns in 
Fig. 6 indicates  the existence of  numerical  errors. 

Up Flat Down 

(a) (b) (c) 

Fig. 11. Outputs of the wave fields excluding the incident beam in vacuum, which corresponds to those in Figs. 9 and 10, except that 
the size of unit cells displayed is 8a × 1 a. 
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Theoretically, all Bragg peaks for an ideal-crystal 
potential should be narrow and converge to a point 
and ideally there should be no contrast from the fiat 
surface when a single beam is used. These numerical 
errors are mainly responsible for the contrast in the 
images obtained from the free surface. The errors are 
also involved in the imaging calculation. To partially 
correct the errors, Fig. 12(ii) shows the results of 

Step-up Flat surface Step-doun 

16.2A 0 16.28 0 16.2g 0 
Focal series (a-Q): -3000,-2000, -1000, O, 1000, 2000, 3000A 

(i) 

Step-up 

(c) ~ -- 

(d) 

(e) 

(f) 

(g) ~ 

16.2g 0 16.2~ 

Flat surface Step-doun 

f - ' ~ _  

0 16.28 
Foca I set ies (a-Q): -3000, -2000, -1000, O, 1000, 2000, 30008 

(ii) 

Fig. 12. (i) Focal series of one-dimensional imaging contrasts using 
the specular beam alone, crossing the wave disturbance caused 
by steps in the last slice in Figs. 10(a), (b) and (c) (t = 556.8/~). 
The defocus range is from -3000 to 3000/~, and the defocus 
step is 1000/~. (ii) Results of subtracting the middle column 
from each of the three columns in (i). 

subtracting the middle column, 1D pictures of the 
flat surface, from each of the other two columns, 1D 
pictures of the surfaces with steps. It is obvious that 
the step contrast is enhanced after the subtraction. 
To estimate the errors quantitatively, the contrast level 
of each picture is calculated as C O N T R A S T =  
S D / M E A N ,  where SD is the standard deviation and 
MEAN is the mean level of the picture. The value of 
the CONTRAST is averaged over each focal series. 
For a step up, a flat surface and a step down in 
Fig. 12(i), we obtained contrast levels from Fig. 12(i) 
of 0.58, 0.13, 0.31. After the correction, as shown in 
Fig. 12(ii), we obtained 1.41, 0, 0.87. Obviously, the 
errors are large: from 22 to 40%. Note that the results 
suggest that the contrast level of a step up is generally 
higher than that of a step down. 

IV. Surface wave 

Suqface wave is another unanswered topic with a long 
history in high-energy electron reflection (HEER).  
The concept of a surface wave dates back to the time 
when Kikuchi & Nagawa (1933) first observed an 
intensity enhancement of the specular spot occurring 
in RHEED when it overlapped an oblique Kikuchi 
line, which was called 'second kind of intensity 
anomaly'.  Later on, this was renamed as 'surface 
resonance',  'surface state resonance',  'Bragg surface 
state resonance (BSR)' and 'surface monolayer reson- 
ance' etc. (Many more have been used.) It was Miyake 
et  al. (1954) who first raised the concept of 'surface 
wave' in HEER relevant to the 'surface resonance'  
phenomenon. The authors pointed out that the 
enhancement of the specular beam can occur if the 
incident electrons suffer a Bragg reflection on a certain 
lattice plane which the authors called 'Bragg reflec- 
tion in a side direction', provided that the boundary 
surface is a mirror plane of the crystal lattice. The 
Bragg reflection is expected to travel almost parallel 
to the crystal surface. This was further studied by 
Kohra et  al. (1962), but no quantitative results were 
reported. 

On the other hand, McRae (McRae, 1966, 1979; 
McRae & Caldwell, 1976) worked on the resonance 
phenomena in LEED and proposed two theories for 
the explanation of resonance; the first one in 1966, 
the second in the 1970's. The origination of the second 
is resonance theory in nuclear reactions (Feshbach, 
1958) which is quite different from traditional 
dynamical analysis in electron diffraction which is 
basically an elastic approach. By reference to reson- 
ance theory in nuclear reaction, the authors intro- 
duced the concept of a surface wave trapped by a 
surface state. The key point of the theory is sub- 
division of the incident energy into the components 
parallel to the surface and normal to the surface, i.e. 
2D free-electron description. The forbidden gap in 
the surface band structure together with the surface 
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potential barrier are considered to confine electrons 
in the surface region of  the crystal and the surface 
resonance is explained as the result of the remission 
of these temporarily t rapped electrons back to the 
vacuum. The concept of  'surface wave trapped in 
surface state' mixed with that of a 'Bragg reflection 
in a side direction parallel with the surface' was later 
inherited or even extended by many authors in HEED 
(Wang, Lu & Cowley, 1987; Peng & Cowley, 1988). 

From our point of view, a consistent, explicit and 
convincing theory on electron surface resonance 
phenomena and surface wave, valid for both low- 
and high-energy cases, has not appeared and the 
question of consistency between various concepts of 
'surface resonance'  and 'surface wave' has not been 
answered. For surface waves, there is no clear experi- 
mental confirmation so far. 

In this section we present results which clearly 
indicated the possible existence of a surface wave. 
However, we do no more than provide a simple 
presentation of the numerical results and further 
theoretical speculation has not been attempted. 

Fig. 13 shows the y-modulated RHEED patterns 
at three different thicknesses, 506.2, 556.8, 607.5 ~ ,  
for three different surfaces: a surface with a step up, 
a flat surface and a surface with a step down. The 
incident angle is 35 mrad and the treatment of absorp- 
tion is the same as that for Fig. 7. The steps are 
introduced at 101.2 ~ .  It should be noted that the 
threshold incidence for the emergence of the (04) 
spots, in the case of 100 keV electrons and a gold 
(001) surface, is 36.6 mrad, which is close to 35 mrad. 
The spots in the flat-surface patterns are well defined 
and there are not many additional features. However, 
the patterns from the surfaces with steps appear  quite 
different from those for a flat surface, although the 
positions of the three basic Bragg reflection spots 

remained unchanged. It should be pointed out that 
there is no intensity comparison between the results 
from two different surfaces, because of different nor- 
malization and displaying conditions. 

For the patterns of the surface with a step up, spot 
broadening is apparent.  The broadening of beams 
caused by surface features in the Bragg case is similar 
to the broadening in transmission caused by defects 
in the bulk crystal in the Laue case, which is a well 
accepted and understood phenomenon. More inter- 
estingly, all of the three Bragg reflected beams have 
a small satellite beam. We have discussed the correla- 
tion between spot splitting and regular surface steps 
elsewhere (Marks & Ma, 1989a) by using a Bloch- 
wave argument alone. Here, the results of the BMCR 
method also indicate splitting from a single step. In 
each pattern of the surface with a step down, two 
additional spots occur near the intersections between 
the Laue circle and the x axis in reciprocal space. 
These two beams are apparently parallel or nearly 
parallel to the surface. It is obvious that these two 
spots are the results of a step down if one compares 
the patterns to the patterns from the flat surface and 
the surface with a step up. This also shows that the 
idea that the step down may make the surface wave 
more visible is logical and comprehensive. However, 
the true physical mechanism of the emergence of 
these spots merits further study and a clear experi- 
mental conformation is needed for the understanding 
of a 'surface wave' and its correlation with 'surface 
resonance' phenomena. Nevertheless, theoretical 
speculation of the existence of a surface wave, which 
is either a 'Bragg reflection in side direction' in the 
sense of Miyake et al. (1954) or a 'wave trapped in 
surface state' in the sense of McRae (1979), is not 
necessarily related to steps or other surface features. 
Therefore, there should also be additional spots along 

506.2 

556.8 

607.5 

step up flat surface step down 

Fig. 13. y-modulated diffraction patterns at three different thicknesses, 506.2, 556.8, 607.5 A, for three different surfaces, surface with 
step up, flat surface and surface with step down. The beam incidence is 35 mrad and absorption 10%. The step is introduced at 
t =  101.2A. 
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the x axis in the patterns of the fiat surface and the 
surface with a step up. We suspected that the 
intensities of these spots are extremely low and so 
are difficult to see when with other spots. We have 
displayed these regions separately and tried to detect 
spots with low intensity. The results are shown in 
Fig. 14; the spots are there, but they have extremely 
low intensities, 10-4-10 -5 lower than the intensities 
of the spots shown in Fig. 13. Apparently, these waves 
have no way to emerge in the experiments and will 
be concealed in the background of inelastic scattering. 
Fig. 14 shows spots for 'surface waves' in the patterns 
of the last two output slices, t = 506-2, 556.8 A, for 
the fiat surface and the surface with a step up. The 
contrast ranges for displaying the y-modulated pat- 
terns from the two surfaces are the same. The 
intensities of the surface waves for a flat surface 
appear weaker than those of the surface with a step 
up, which implies that the disturbances of a step up 
or other surface features also tend to 'release' the 
surface wave. 

At this stage of the numerical investigation, we can 
at least conclude that a 'surface wave' may be a true 
detectable entity in high-energy electron reflection 
and the best system for its observation would be an 
atomic smooth surface with some down steps. The 
correlation between the existence of 'surface wave' 
and 'surface resonance' merits further studies. 

V. Concluding remarks 

The results obtained using the BMCR method in this 
paper can be considered as the last step of the 
development of the method; application of the 
BMCR method to some real problems and testing the 
potential of the method. 

The results clearly indicate that the BMCR method 
is feasible and reliable. In other words, the 'last step' 

Surface uaves for up ~tep 

]hJckness: 50~.2 556.8 (N) 

Surface waves for  f l a t  sur face  

lhlckness:  506.2 556.8 (A) 

..... :: :- ?ii:~iiiiiiiiii i?'~w,~ 
w . -  

Fig. 14. Spots of  surface waves in the patterns of  the last two 
output slices, t = 506.2, 556.8/~,, for the flat surface and the 
surface with step up. 

is also the first step of more applications of the 
method. The consistency between the Bloch-wave and 
multislice approaches provides a strong mutual proof 
of the validity for both approaches in the Bragg case. 
Their combination, the BMCR method, opens up a 
new way to exploit the physical processes of electron- 
crystal-surface collision. 

The consistency investigation in a previous paper 
(Ma & Marks, 1990) has indicated that the effects of 
surface truncation in the Bloch-wave method are 
small and start to decline after 100 A. Therefore, we 
consider that it is reasonable and practical to start 
simulations of surface features at the thickness of 
100 A, although it is still not a perfectly converged 
stationary solution in the crystal potential without 
surface truncation, but this appears to be a surmount- 
able problem. 

The computation speed of the BMCR method 
has been brought up to the speed of the conven- 
tional multislice method by using 'side input' of the 
Bloch-wave function as a top cap. For the simula- 
tions of 600 slices of sampling size 1024x64 on 
an Apollo 3500, the CPU time does not exceed 
6h. This is manageable on many computation 
facilities. 

However, the BMCR method does not mean the 
elimination of edge effects (Fig. 2). For the multislice 
iterations with a non-periodic crystal potential, edge 
effects will always be there. We should mention that 
we have recently tested the edge-patching method 
mentioned in a previous paper (Ma & Marks, 1990), 
and preliminary results indicate that it can sig- 
nificantly reduce the edge effects and improve the 
stationary solution. This will be discussed elsewhere 
(Ma, 1990). 

It appears that the BMCR method does provide a 
reliable basis for simulating surface phenomena and 
gives the theoretical analysis in high-energy electron 
reflection a more solid foundation. 

In general, the BMCR method only provides a new 
apparatus for solving a problem rather than the so- 
lution to the problem. From our point of view, there 
are still two very basic problems in high-energy elec- 
tron reflection which remained unanswered or incom- 
pletely answered: 

(i) The source of two-dimensional RHEED pat- 
terns. So far, numerical analyses using the Bloch-wave 
method or multislice method or the BMCR method 
are all only consistent with semicircular RHEED 
patterns, most of which were recorded by using a 
special RHEED camera under the UHV condition 
(Siegel & Menadue, 1967; Ino, 1977, 1980). 

(ii) The true source of surface resonance 
phenomena. 

These two problems may be the keys to open the 
door to more-informative RHEED patterns and REM 
images. The BMCR method obviously could play a 
role in further studies in this field. 
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Abstract 

In o rde r  to apply  di rect  m e t h o d s  rou t ine ly  to 
macromolecular crystals it will be necessary to gener- 
ate a non-atomic theory which is applicable to con- 
tinuous densities. Reformulation of the 'phase prob- 
lem' in terms of deconvoluting an autocorrelation 
function or Patterson synthesis reduces the problem 
from a theoretically intractable transcendental prob- 
lem to a system of simultaneous quadratic equations. 
These quadratic equations may, in principle, always 
be solved by conjugate direction search techniques. 
The phase problem is shown to be a class P problem, 
admitting a deterministic solution in polynomial time. 
Two algorithms are presented with running times 

2 proportional to Npoints and Npoints log Npoints per step. 
These algorithms are a pixel-by-pixel search and a 
conjugate gradients search. When the data are exact 
and complete the Fourier magnitudes are readily 
inverted by them to find the image. An example with 
real data, from a 15mer of DNA, is also shown. 

0108-7673/90/070606-14503.00 

Introduction 

The phase problem in crystallography occurs because 
it is only possible, in general, to measure the ampli- 
tude of the diffracted X-ray. A great deal of effort 
has gone into various methods for overcoming this 
problem. Experimental means like isomorphous 
replacement and anomalous scattering (Blow & 
Crick, 1959; Watenpaugh, 1985; Hendrickson, Smith 
& Sheriff 1985) for macromolecules, as well as theo- 
retical approaches like direct methods (Karle & 
Hauptman, 1950; Ladd & Palmer, 1980) for small 
molecules have been developed to find useable values 
for the phases. These have been successful, but the 
general solution to the phase problem has remained 
elusive. In particular, it has been very difficult to 
invert numerically the observed magnitudes and 
obtain the electrola density when the density neither 
is composed of a small number of atoms, nor diffracts 
to high resolution. This is typically the case with 
macromolecular structures. 
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